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Abstract

The data produced by the Varieties of Democracy (V-Dem) project contains ordinal

ratings of a multitude of country-level indicators across space and time, with multiple

experts providing judgments for each country-year observation. We use an ordinal item

response theory (O-IRT) model to aggregate multiple experts’ ratings. The V-Dem

data provide a challenging domain for such models because they exhibit little cross-

national bridging. That is, few coders provide ratings for multiple countries, making it

difficult to calibrate the scales of estimates cross-nationally. In this paper, we provide

a systematic analysis of the issue of bridging. We first use simulations to explore how

much bridging one needs to achieve scale identification when coders’ thresholds vary

across countries and when the latent traits of some countries lack variation. We then

examine how posterior predictive checks can be used to check cases of extent of scale

non-comparability. Finally, we develop and evaluate search algorithms designed to

select bridges that are most likely allow one to correct scale incompatibility problems.
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Latent concepts are ubiquitous in political science. The study of political systems, poli-

cies, and belief systems requires careful theorizing and exploration of concepts that are not

directly measurable. In particular, constructs such as level of democracy, extent of human

rights, and ideology are all latent qualities that we cannot observe directly. Nonetheless,

social scientists have theoretical reasons to work with measures of such latent constructs and

core questions in our disciplines are virtually impossible to tackle if we restrict the objects

of our analyses to concrete observables. Therefore, we often rely on the subjective judgment

of experts to provide measures of latent traits.

Of course, there are many ways to leverage expert knowledge for concept measurement.

One approach places substantial faith in a small number of experts. For instance, one might

use one specialist, or a small panel of judges, who jointly code the set of observations, say

polities (Marshall & Gurr 2011). This strategy assumes that a small group of experts have

access to the knowledge and information necessary to adequately measure latent traits across

the population of interest. Not surprisingly, this assumption may be difficult to meet in cross-

national studies where detailed local knowledge is necessary to adequately assess concepts.

Thus, in cross-national research, it is common to distribute the load over a large number

of experts, and ask each specialist to code a single unit, say a party’s election manifesto

(Klingemann, Volkens, Bara, Budge & McDonald 2006). Ideally, this strategy draws from

a cross-national pool of experts that can leverage local knowledge to produce detailed and

valid measures.

This measurement strategy relaxes the assumption that a small group of experts can

evaluate many units, but has the potential to generate differential assessments across units

because it implicitly assumes that experts’ understandings of concepts are identical. In

other words, these approaches simply assume that each coder is able to produce a valid

point-estimate of the latent concept at hand.1 Multiple raters may have quite different un-

derstandings of latent concepts and this variation in conceptualization may be especially

1Klingemann et al. (2006) are a somewhat inappropriate example here, because they attempt to train
their raters to maximize inter-coder reliability.
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exacerbated when experts hail from varying cultural and educational traditions. Indeed, in

the context of party manifestos, Konig, Marbach & Osnabrugge (2013) show that expert

ratings exhibit substantial cross-national bias. More generally, people with varying back-

grounds are likely to apply different standards when rating concepts (King & Wand 2006).

For example, consider the task of rating the extent of media freedom in a country, using a

Likert scale running from zero (no freedom) to five (complete freedom). If experts in coun-

try A—perhaps because of a long history of freedom of expression—hold media freedom to

higher standards than those in country B, then country A expert thresholds will be higher

than those of their counterparts. Even within countries, experts standards may differ. And,

varying standards aside, research shows that people’s responses to Likert scales vary system-

atically across cultures (Lee, Jones, Mineyama & Zhang 2002). Thus, measurement efforts

that rely on cross-national teams of experts need to take the possibility of varying standards

seriously.

Both of the aforementioned strategies place substantial faith in each individual expert,

and—because they generate only one estimate per observation—provide little leverage over

potential measurement uncertainty. In essence, therefore, they assume that the expert rat-

ings that they rely upon are error-free, or at least highly reliable.2 Expert surveys, where

more than one expert provides a rating of each observation, allow researches to relax this reli-

ability assumption and, at least potentially, produce estimates of measurement error (Bakker,

de Vries, Edwards, Hooghe, Jolly, Marks, Polk, Rovny, Steenbergen & Vachudova forthcom-

ing, Fish & Kroenig 2009, Kitschelt 2013). With these approaches, however, aggregating

coders’ opinion becomes an issue. In most cases these studies focus on measures of cen-

tral tendency, and ignore precision, or, at best, provide simple summaries of variation in

expert codes. Moreover, this approach does little to alleviate concerns about cross-expert

equivalency; there is no way of knowing whether experts have the same scale in mind when

they provide their codings. For example, we do not know if a Hungarian specialist defines

2Although many of these projects do attempt to verify the inter-coder reliability of their experts or coding
teams.
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extreme-right political parties in the same way that a Swedish expert might. While expert

surveys typically use carefully worded questions that are designed to minimize conceptual

slipping, there remains a substantial risk that experts in different contexts might interpret

coding rules in systematically different ways.

A more sophisticated approach to aggregating expert ratings explicitly models the mea-

surement process, typically using item response theory (IRT) methods developed by scholars

of educational testing (see e.g. Clinton & Lapinski 2006, Clinton & Lewis 2007, Treier &

Jackman 2008, Pemstein, Meserve & Melton 2010, Linzer & Staton 2012, Konig, Marbach

& Osnabrugge 2013, Schnakenberg & Fariss 2014, Fariss 2014). These models relax two

key assumptions implicitly made by traditional approaches to aggregating ratings in expert

surveys. First, they allow for variation in rater precision. Second, they allow raters to adopt

differing standards of conceptualization. In particular, when raters provide ordinal (Likert

scale) ratings of a particular concept, these methods allow for the possibility that different

experts have varying thresholds for placing observations into particular categories within the

scale. Finally, because IRT methods are grounded in an explicit model of the rating pro-

cess, they both aggregate information provided by multiple experts and produce reasoned

estimates of uncertainty around aggregate point estimates.

However, these tools are not immune to the problems that plague other strategies for

measuring latent social science concepts cross-nationally. In particular, while these methods

can, in principle, deal with variation in how experts perceive latent traits, common patterns

of data collection in comparative politics—in particular, using disjoint sets of coders across

countries—make it difficult for researchers to use IRT models to produce cross-nationally

comparable measures of latent concepts. Thus, a persistent problem in the use of these

methods has been the issue of calibration/comparability, or lack of bridging. Since in many

cases the same latent concept is being measured for different units and/or in different times, it

is vital to identify bridges who cross disjoint sets of coders and provide information necessary

to calibrate coder thresholds across units. In our context, these are experts who are capable
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of rating more than one country. This problem is analogous to that faced by researchers

who use IRT methods to estimate ideology from roll call votes and who wish to create

common space measures across institutions (McCarty & Poole 1995, Bailey 2007, Shor &

McCarty 2011) or within institutions across time (Poole & Rosenthal 1997, Groseclose, Levitt

& Snyder 1999, Martin & Quinn 2002). Yet, we have little understanding of exactly how much

bridging is necessary to achieve scale equivalency across units, and recent work has called

into question the extent to which existing common spaces actually achieve scale identification

(Ho & Quinn 2011).

In this paper we provide a systematic analysis of the issue of bridging, motivated by the

Varieties of Democracy (V-dem) project. This project is, at its core, an expert-survey, in

which country experts provide ordinal ratings about dozens of democratic indicators (e.g.

barriers to parties, freedom of academic speech, civil society participation), for the 1900-

2012 period. The unit of analysis for each indicator is country-year, for which at least five

coders provide ratings. A major selling point of the project is its reliance on a mix of local

experts and foreign specialists; generally about half of the raters reside in the country that

they rate. But this focus on specialized knowledge comes at a cost; initial survey waves

almost exclusively asked experts to provide ratings for only a single country and the length

of the survey made both the creation and use of anchoring vignettes (King & Wand 2006)

impractical. Subsequent waves have focused on ‘bridge-coding,’ but the search for bridge

coders faces a number of practical limitations. First, the specificity of the survey3 means

that few potential raters have the ability to provide cross-national coding, especially for the

whole time period under consideration. Resources are also an important constraining factor

because recruiting bridge-coders and administering surveys is expensive. Thus the V-Dem

project faces a problem that is—or should be—generally applicable to a large class of cross-

national expert surveys: it needs to recruit bridge coders as efficiently as possible and to

evaluate when bridge coding is sufficient to provide cross-nationally comparable estimates of

3Technically, surveys. V-Dem experts are partitioned into over ten specializations and each set of experts
completes a survey specific to her area of expertize.
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latent traits.

Thus, we seek to answer a set of key questions. First, if we adopt weak prior assumptions

about the structure of rater thresholds,4 how much bridging is necessary to achieve cross-

national comparability in a survey structured like V-Dem? Perhaps more importantly, how

do we know when we have enough bridges? Or, failing that, can we at least develop tools to

systematically identify cases for which scale comparability is likely to be a problem? Finally,

how can we most efficiently select bridges in order to obtain scale comparability across

countries? Or, in other words, what set of bridges are likely to provide such comparability

at the lowest cost to the project?

In the next section we describe the IRT model at the heart of this project. Next, we

illustrate the bridging problem in V-Dem and then use simulations to explore how much

bridging one needs to achieve scale identification when faced with two types of problems

that seem common in V-Dem, and probably plague many cross-national expert surveys of

social science concepts. We then examine how useful posterior predictive checks are for

identifying instances of scale non-comparability. Finally, we develop and evaluate a pair of

search algorithms designed to select bridges that are most likely to provide information, and

thus allow one to correct for, scale incompatibility problems.

1 An O-IRT Model for V-Dem Data

We need to introduce some notation to keep track of things because the complexity of the

V-Dem dataset, which contains ratings of a vast number of indicators across space and time.

Moreover, each indicator is rated by more than one judge. This means that there are

• i ∈ I indicator variables,

4Weak priors allow raters to have widely varying thresholds. Very strong priors would assume, as most
projects involving cross-national expert surveys essentially do, that thresholds are identical across raters.
Middle-ground assumptions might maintain that same-country experts have identical, or very similar, thresh-
olds, or that raters with similar backgrounds—education, profession, and so forth—have similar thresholds
to one another.
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• r ∈ R raters,

• c ∈ C countries,

• and t ∈ T = {1, . . . , t} time periods.

I is the set of indicator variables while i represents one element from that set, and so

on. Each of the |R| raters provides ratings of one or more of each of the |I| indicators

in some subset of the available n = |C| × |T | country-years covered by the dataset. Each

country enters the dataset at time tc and exits at time tc + 1. We’ll call rater r’s set of

observed ratings/judgments Jr. Each element of each of these judgment sets is an i, c, t

triple. Similarly, the set of raters that rated country-year c, t is Rct. In this paper we focus

on models for a single indicator, and therefore drop the i indices from our notation. We also

restrict our attention to the case where indicator i is ordinal.

For a given indicator we observe a sparse5 |C| × |T | × |R| array, y, of ordinal ratings.

While our observations are ordinal, we assume that raters make judgments about latent

continuous concepts. In particular, we assume that each rater first perceives latent values

with error, such that

ỹctr = zct + ectr (1)

where zct is the “true” latent value of the given indicator in country c at time t, ỹctr is

rater r’s perception of zct, and ectr is the error in rater r’s perception for the country-year

observation. For the cases that she judges (Jr), rater r places a country-year in category k

if τr,k−1 < ỹctr ≤ τr,k, where each τ represents a rater cutoff point on the underlying latent

scale. The vector τ r = (τr,1, . . . , τr,K−1) is the vector of unobserved ranking cutoffs for judge

r on the latent scale. We fix each τr,0 = −∞ and τr,K = ∞, where K is the number of

ordinal categories raters use to judge the indicator. For the moment, say the cumulative

5The majority of raters provide ratings for only one country.
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distribution function for the rating errors is

ectr ∼ F (ectr/σr). (2)

Combining this assumption, and the assumptions about rater cutoffs described in the above

paragraph, with equation 1 implies the following data generating process (DGP):

Pr(yctr = k) = Pr(ỹctr > τr,k−1 ∧ ỹctr ≤ τr,k)

= Pr(ectr > τr,k−1 − zct ∧ ectr ≤ τr,k − zct)

= F

(
τr,k − zct

σr

)
− F

(
τr,k−1 − zct

σr

)
= F (γr,k − zctβr)− F (γr,k−1 − zctβr) .

(3)

The last two lines of equation 3 reflect two common parameterizations of this model.

The first parameterization is typically called multi-rater ordinal probit (MROP) (Johnson &

Albert 1999, Pemstein, Meserve & Melton 2010),6 while the latter is an ordinal item response

theory (O-IRT) setup (Clinton & Lewis 2007, Treier & Jackman 2008). Note, in particular,

that βr = 1
σr

and γr,k =
τr,k
σr

.7 The parameter σr is a measure of rater r’s reliability when

judging the indicator; specifically it represents the size of r’s typical errors. Raters with

small σr parameters are better, on average, at judging indicator i than are raters with large

σr parameters. In the IRT literature, βr is known as the discrimination parameter,8 while

each γ is a difficulty parameter. The discrimination parameter is a measure of precision; a

rater characterized by an item discrimination parameter close to zero will be largely unre-

sponsive to true indicator values when making judgments while a rater with a discrimination

parameter far from zero will be very “discriminating.” The γ and τ parameters are thresh-

olds that control how raters map their perceptions on the latent interval scale into ordinal

6If we assume F (·) is standard normal.
7This equivalency breaks down if we allow for βr parameters less than one. Thus, the O-IRT model is

potentially more general than MROP.
8Equation 3 makes clear that βr measures rater precision.
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classifications. The term “difficulty parameter” stems from applications in educational test-

ing where the latent variable is ability and observed ratings are binary (in)correct answers

to test questions. The scale identification problem faced by cross-national surveys such as

V-Dem is driven by the fact that these γ and τ parameters may—and perhaps are even likely

to—vary across raters hailing from different cultural and educational backgrounds.

Completing the model specification requires adopting prior distributions for the model

parameters. We will focus on the O-IRT model here. Generally, one sets zct ∼ N (0, 1) a

priori. This assumption (arbitrarily) sets the scale of the estimated latent traits. Second,

one assumes βr ∼ T N (µβr , σβr , 0,∞).9 Finally, while different authors adopt varying priors

for γr,k, it is possible to adopt completely uninformative uniform priors for these parameters,

subject to the constraint that they remain ordered within raters. When one lacks any

bridging between sets of raters, such a prior will fail to identify the model. Or, in other

words, under such a prior, the model lacks sufficient information to set the relative placement

of disjoint (with respect to cases rated) sets of rater thresholds, and, in turn, latent trait

estimates. Thus, we adopt vaguely informative priors for the γr,k parameters throughout.

At its heart, this model does three things. First, it takes ordinal observations and maps

raters’ thresholds onto a single interval-valued latent variable. In other words, it provides a

reasoned way to deal with a relatively large class of differences in how individual respondents

interpret Likert scales. Second, it allows raters to vary in how reliably they make judgments,

but largely assumes away the potential for systematic rater biases that are not covered

by varying thresholds.10 This latter point is easiest to see in the MROP version of the

model. Specifically, in a standard MROP, one assumes F (·) is standard normal, such that

ectr = N (0, σ2
r). So, in other words, raters get things right on average, but they make

91 is a common choice for muβr
. One typically chooses a large value for σβr

, thereby adopting a vague
prior. The assumption of truncation at zero equates to assuming that raters agree on which direction is up.
While reasonable in our context, this assumption is inappropriate when one uses IRT models to estimate
ideology from voting behavior.

10For instance, the model cannot account for a rater that applies one set of thresholds to one country and
a different set to another. Nor does this model capture the possibility that rater precisions might vary over
space and time, although the model might be expanded to handle such issues.
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stochastic mistakes where the typical magnitude of mistakes that rater r makes on indicator

i is σ2
r . So, if σ2

r < σ2
r′ then rater r provides more reliable judgments about z than r′ because

she makes smaller mistakes on average. Finally, taking differences in rater thresholds and

precisions into account, the model produces interval-valued estimates of latent traits—each

zct—accompanied by estimates of measurement error that reflect both the level disagreement

between coders on the case in question, and the estimated precision of the coders who rated

the case.

2 The Bridge Problem

In practice, we face two related problems when attempting to use O-IRT models to generate

cross-nationally comparable estimates of latent traits using the V-Dem data. The general

problem, of course, is that, if we choose not to simply assume that raters share similar

thresholds,11 we cannot establish the cross-national comparability of our estimates. And,

because the scale of the model is established by the vague prior on the zct parameters, we

know that, in the absence of any bridging, the scale location of scores within countries

will be set relative to the empirical pattern of codes provided by raters. If country traits

are highly variable and generated randomly from the same distribution, then scales would

tend to converge even without bridging, but real traits do not look remotely like a random,

highly variable, process. Furthermore, whether or not bridging observations establish scale

convergence relies not just on whether or not we have many bridges, but on how bridging

observations correspond to empirical patterns in the data. In other words, some bridges are

more informative than others and certain countries are much harder to align with a common

scale than others. Indeed, our second primary concern is that empirical patterns in regime

traits often exacerbate the fundamental scale equivalence problem.

While it is, in general, difficult, to determine whether two cases are sufficiently bridged to

11And fitting O-IRT models to single-country series provides substantial evidence that rater thresholds
vary, even within countries.
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obtain scale equivalence, sometimes the lack of sufficient bridging is painfully obvious. When

we naively apply O-IRT models to weakly bridged V-dem data, we consistently produce

estimates of latent values for Western-European countries that are lower than for countries

in which experts codings’ on the original Likert scales point to serious democratic deficiencies.

This finding is largely a result of two trends in our data. First, coders of Western, established

democracies exhibit low variation in their coding. An example of this issue is presented in

Figure 1. The top two panels present the yearly average ratings for Denmark on the original

ordinal scale for V-Dem’s barriers to parties indicator. Country experts clearly agree that

there are no barriers to parties in Denmark (higher scores reflect lower barriers), except

during a brief period in the 1940s. Contrast this result with the highly variable yearly

average of this variable for Mali, shown in the top right panel of the figure. The two bottom

panels present the result of fitting an O-IRT model, like that described in section 1, to

around 150 countries worth of ratings containing few cross-national bridges. While the

measurement model results for Mali reflect its transition to a “no barriers” mode (as the

zct estimates cross the upper threshold),12 the measurement model estimates for Denmark

never cross the upper threshold. Thus, even though the country experts agree that the

situation with regards to parties’ barriers is flawless in Denmark, the lack of variation in

ratings is problematic. Clearly, we lack sufficient bridges to place Denmark and Mali on

the same scale. Moreover, a reasonable interpretation of the Danish data is that, because

every rater agrees that Denmark rates very highly on this trait in every time period, we have

should place Denmark near the top of the common scale with high confidence. But, once

we relax the assumption that thresholds have consistent meanings across raters, country

time-series like Denmark provide virtually no information about scores, because we have no

way to nail down what Danish thresholds mean relative to one another, or to coders in other

countries.13 Furthermore, while cases that exhibit sufficient variation to produce estimates

12Thresholds in these graphs reflect population means for the γr,k parameters.
13This problem is akin to the issue pointed out by Spirling and McLean (2007), who argue that the

optimal classification algorithm places extreme members of the UK parliament at the center of the ideological
spectrum because of perfect ideological voting of these MPs.
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that span their local scales may look comparable on visual inspection, without sufficient

bridging it is impossible to establish the comparability of country time-series, even when

they provide substantial information about coder thresholds within countries.

[Figure 1 about here]

3 A Simulation-Based Examination of Bridging

3.1 Thresholds Drawn from the Same Distribution

To evaluate the effects of bridging on model fit, cross-national comparability and identi-

fication, we preform a number of Monte Carlo experiments. Our first set of experiments

examines the “Swiss,” or constant-country problem. These experiments, which examine

scale equivalence between two simulated “countries,” proceed as follows:

1. We generate “true” values for each zct, which represent real country-year latent ability

scores. In order to proxy the countries we observe in the V-dem dataset, we focus on

two country ‘types.’ The first is what we call a ‘constant’ country (used as proxies

for Western-European countries). To simulate these countries, we draw latent ability

scores zconstantct ∼ N (1.8, .05). In addition, we generate latent ability scores for countries

we dub ‘random.’ These are countries in which coders’ ratings exhibit a high degree

of variation, and thus provide us with a substantial information regarding coders’

thresholds. These scores are drawn from a zrandomct ∼ N (0, 1) distribution.14

2. We also generate |R| ×K coders’ thresholds, γr,k. The first threshold, γr,1, is drawn

from a N (−1.5, 0.2) distribution. Additional three, γr,k=(2,...,4) are drawn sequentially

from normal distributions with means (-5., .5, 1) and standard deviation 0.2. For

each threshold, we truncate the prior from below by the mean of the k − 1 threshold.

14Throughout the paper we use the term constant country to denote the country whose latent ability scores
were drawn from a N (1.8, .05) distribution, and ‘random country’ to denote a N (0, 1) country. Random
countries are, of course, an ideal type never actually realized in the V-Dem data.
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Note that, while we allow rater thresholds to vary, the fact that we draw them from

identical distributions will tend to minimize the role that such variation plays in scale

equivalence. Thus, we focus attention on the issue that constant countries pose in

these experiments.

3. To complete the latent data, we generate coders’ discrimination parameters such that

βr ∼ T N (1, 3, 0, inf) distribution.

4. Given the above simulated parameters, we use equation 3 to simulate observed ratings

data.

For our purposes, bridge-coding is defined as a situation where a coder who ‘originally’

codes one country (for example, an expert of British politics, rating only the UK), also pro-

vides ratings for an additional country. As for our stylized, simulated datasets, we generally

begin with ‘baseline’ data, in which we simulate data for two countries, over a period of 100

years. This baseline dataset includes five coders who provide ratings only for one country,

and five who provide ratings for the other. This is a ‘no-bridging’ scenario. In order to

simulate bridge coding, we choose a number of coders from only one country, and simulate

their ratings for the other. We do this gradually, starting with only one bridge coder, and up

until we have ‘full-bridging.’ This is a situation where all five coders from a given country

also provide ratings for the other.

We begin our evaluation of the effects of bridging on the mean square error (MSE)

between the model’s estimates and the real latent scores. Bridge-coding is simulated for the

entire period (100 years). The results of these simulations are shown in Figures 2 and 3. The

figure is divided into sub-regions, capturing the different levels of simulated bridge coding

(e.g., the left sub-region is a ‘no-bridging’ scenario, and in the fourth, there are three coders

from the first country who also rate the second). We replicated each experiment across ten

simulated datasets. The figures demonstrate that full time-series bridging, done either from

the constant to the random country or vice versa, results in a rapid improvement in terms of
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MSE. Most strikingly, once we simulate one bridge coder, the MSE values for both country

types decrease from approximately 1 to 0.3 (in the constant country), and approximately

0.85 to 0.2 (random). Once we add more bridge coders MSE values are further reduced, and

reach a plateau of approximately 0.15-2 for constant countries and 0.1-0.15 for the random

country with 3-5 bridge coders.

[Figures 2, 3 about here]

To assess the impact of the quantity of bridge coding on MSE, we repeat these experi-

ments with one minor modification. Instead of simulating bridging for the entire period, we

limit our bridging to only 10 years. Figures 4 and 5 summarize the results of these experi-

ments. The trends visible in these figures are very similar to those shown in Figures 2 and

3. Specifically, it is clear that bridging brings about a substantive reduction in MSE. The

magnitude of the reduction seems to be proportional to the amount of bridge coding.

[Figures 4, 5 about here]

The second criterion we use to evaluate the effects of bridging is the percentage of the

latent ability scores zct which are covered by 95% of the model’s posterior latent scores

estimates (coverage). Examination of the Figures 6-7 reveals that regardless of the direction

of bridging, even one bridge coder (for the entire period) increases the coverage rates to

approximately 90%-100%. This rapid improvement is contrasted with the slow improvement

we see in coverage when we limit our bridging to only 10 years (see Figures 8-9). This result

has important implications for the V-Dem project’s approach to recruiting bridge coders to

solve the constant country problem. In particular, we are likely to benefit far more from

recruiting a small number of bridge coders to code full time series across constant and varying

countries than we are from asking many coders to rate limited cross-sections.

[Figures 6-9 about here]
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Next we turn to direct comparisons between the model’s parameters and the generated

data. We begin by inspecting the zct parameters. By examining this we hope to assess the

degree to which lack of variation in latent scores affects model fit, and the extent to which

bridging helps alleviate potential issues. Before preforming these direct comparisons, we

follow Bafumi et. al (2005) and and rescale the model’s fitted values so that they have the

same mean and standard deviation as the original latent scores. To present these comparisons

systematically, we plot the generated country latent scores against the model’s z parameters

in Figures 10 and 11. The first thing noticeable in Figure 10 is that the estimates for the

constant countries (in red) cluster in two distinct areas. One cluster is located close to the

45 degree line, and one below it.15 In addition, the results of the baseline model (upper left

panel in both figures) indicate that the model tends to over-predict the latent scores for the

random country. This is a result of the relativity of the latent scales and our decision to

mean-center estimates to aid in comparability; the rotation of the latent traits is arbitrary.

Focusing on Figure 10, we see that the quantity of bridge coding has a strong effect on

model fit. Bridging pulls both the over predicted and the under predicted (constant) values

toward the 45 degree line. Much like in previous diagnostics, this process is gradual. In

the simulation in which all five coders from the constant country also code the random one

(lower-right panel), the estimates for the random county are almost entirely clustered on the

45 degree line (apart from a number of outliers at the extremes of the distribution). Under

this scenario, the estimates from the constant country are also closer to the 45 degree line.

[Figures 10 and 11]

The results presented in Figure 11 match closely with those observed in Figure 10. How-

ever, closer inspection of our results reveals that when the bridge coding is done from the

constant country to the random one, the fit of the model is improved. As can be seen in

Table 1, the MSE for both random and constant countries are lower for constant-random

15This looks suspiciously like a multiple-modes problem. A similar pattern does not appear when we use
variational approximation to estimate the O-IRT model. Here we use Hamiltonian Monte Carlo.
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bridging than for random-constant bridging. This result makes a lot of sense because, prior

to bridge coding the model knows a lot less about the thresholds of raters in the constant

country than it does about those in the random country. In terms of bridge-rater recruit-

ment strategy, we see that we stand to obtain greater benefit from asking “Swiss” coders to

code cases with substantial variation than we do from recruiting coders with well-estimated

threshold values to code constant cases.

[Table 1 about here]

.

We now turn to inspecting model fit with regards to the coders’ thresholds parameters

γj,k. As in the previous examples, we compare patterns and quantity of bridging, how

these affect the model’s predictions, and their relationship with the latent generated data.

Figures 12 and 13 summarize these experiments. As always, the no-bridging scenarios yields

estimates that are biased. Specifically, the threshold parameters of coders who only rate

the random country are over-predicted, while those of coders who only code the constant

country are under-predicted. As can be seen in Figure 12, increasing the degree of bridging

from the constant to the random country reduces the bias, as more and more of the points

fall closer to the 45 degree line. In addition, it is clear that even without a large degree

of bridging, the lower thresholds of the constant coders are estimated with minimal bias.16

Overall, even with full bridging (i.e. when all coders from the constant country also code the

random country), there is still bias in the estimates of coders’ thresholds. Examination of

figure 13 highlights the extent of this issue. The figure shows that when the bridging pattern

is from the random to the constant country, bridging has little effect on the bias with which

these parameters are estimated.

In addition, the lower thresholds of the coders who are originally from the constant

country (depicted at the upper panels of Figure 12 in blue dots and in the bottom panels in

16We simulate the constant country such that coders almost give it a perfect, high score. This minimal
information is sufficient to estimate the location of the lowest threshold with little bias, but not of other
thresholds.
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red, as we simulate more and more bridge coding), are estimated with minimal bias when

we simulate full bridging17

[Figures 12 and 13]

3.2 Thresholds Drawn from Different Distributions

We now turn our attention to situations where latent traits exhibit substantial variation

within countries but coders across countries have significantly different thresholds. To simu-

late the situation where coders from different countries have different thresholds, we generate

the coders’ thresholds drawn from different distributions. For the “low threshold” coders,

the means of their k thresholds, γlowµ,k , are drawn from a N (−1, .5) distribution. These coders

are able to discriminate between lower-valued latent scores, but lump high latent values into

their top ordinal category. For the “high threshold” coders, the means of their k thresholds,

γhighµ,k , are drawn from a N (1, .5) distribution, subject to the ordering constraint. These

coders are less able to discriminate low latent traits. This simulates a country where coders

consistently tend to be more harsh on their evaluations of the country’s level of political

development. These two sets of coders rate two “random” countries, for which the latent

scores are both drawn from a N (0, 1) distribution. The parameters of coders’ discrimination

are generated from the same distribution as in the previous simulation. We also follow the

same data generating process to simulate coders’ observed ordinal ratings for a hundred

years of two countries.

In the baseline (unbridged) model, five “low threshold” coders rate only one country,

while the five “high threshold” coders code the other country. Then we evaluate the effects

of bridge-coding by simulating either “low threshold” or “high threshold” coders’ ratings

for the other country for the entire period. The MSE of these simulations are shown in

Figure 14 and 15. Figure 14 and 15 demonstrate the effects of bridging coding done by

“high threshold” and “low threshold” coders, respectively, on the MSE. The Figures suggest

17That is, a situation where all countries from country A also code country B.
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that bridging, either done by the “high threshold” or “low threshold” coders, brings a rapid

improvement for the “bridged country.” However, the improvement for bridge coders’ original

country is not substantial. For example, when a “low threshold” coders does bridging coding

for the other country, it provides information about where thresholds of those “high” coders

are. In addition, the “high” coders’ are less able to distinguish between latent traits below

their lowest threshold, and the bridging coding helps solve this issue. Similarly, the “low”

coders cannot distinguish between latent traits above their highest threshold, but since none

of the “high” coders does bridging coding for the “low” coders’ country, those high latent

traits are still not accurately estimated.

[Figures 14, 15 about here]

Figures 16 and 17 more clearly illustrate the effects of bridging coding on the country-

year estimates. The Figures show that in the baseline experiment, country-years coded by

the “low” coders (black dots) tend to be overestimated; while country-years coded by the

“high” coders (red dots) are likely to be underestimated. In addition, the high latent traits

in the “low” coders’ country are in general poorly estimated, and vice versa. The estimates

for both countries move toward the 45-degree line. However, for the bridging countries, the

high latent traits in the “low” coders’ country and the low latent traits in the “high” coders’

country are still poorly estimated.

[Figures 16, 17 about here]

In sum, these experiments imply that, when coders in different countries have significantly

different standards—when one set of coders is more strict than the other—we require bridges

in both directions to obtain scale equivalence. It also demonstrates that the information

provided by limited bridging does not filter through γr,k and zct estimates as rapidly as one

might intuitively expect. Of course these simulations are, in a sense, worst case, because the

cross-national threshold differences that we examine here are severe. Nonetheless, because
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we can not know how different coders thresholds are a priori, these simulations expose the

potential severity of the bridging problem.

4 Identifying Poorly Bridged Cases in Real Data

The simulations in the previous section starkly illustrate the scope of the bridging problem

and provide some intuitions about how to select bridges to best mitigate this issue. The

experiments with simulated data suggest that bridge rating helps solve the issues of “con-

stant” countries and different thresholds of different groups of coders. When the quantity

of bridge coding increases, the MSE between the country-year estimates and the simulated

latent scores decreases. But our ability to evaluate bridging quality in these simulations rests

on the fact that we know true latent values. To address these question with real data, we

need techniques for identifying poorly bridged cases from observable quantities.

This is a difficult problem because the question of whether two cases are sufficiently

bridged is, at the limit, unknowable. Nonetheless, while we may not be able to develop a

test that establishes scale equivalence across sets of raters, we should be able to use the

bridges that we do have to identify cases where scale equivalence is unlikely. In particular,

our proposed approach uses in-sample posterior predictions from the model to test for poor

model fit in bridge observations. Consider a bridge rater based in arbitrary country—we will

call this bridge rater rb— who provides a rating yctrb = k for a case, ct, in another country.

Given model parameters, the posterior predicted probability of observing the bridge rating

yctrb = k is

p(yctrb = k|γ, z,β) = Φ(γrb,k − zctβrc)− Φ(γrb,k−1 − zctβrc).

A model that fits the data well should place relatively high probability on the outcome, k,

that we actually observe. More importantly, all else equal,18 a model that exhibits scale

equivalence across countries should do a similarly good job of predicting ratings by bridge

18Rater reliability, in particular.
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raters as it does predicting ratings by in-country raters. On the other hand, if scales vary

across countries, then the model should expect predict behavior by rb that is off the mark,

and it should do a worse job of predicting rb’s ratings than it does predicting the ratings

of in-country raters of the bridged case. Scaling up, if we find that our posterior predictive

capability for bridge ratings substantially under-performs our ability to predict in-country

ratings for bridged cases, then we should be suspicious that the target country’s scale is out

of whack with those in the bridge raters’ countries.

Levering this logic, we calculate the posterior probability based on the point estimates

of γrb , zct, and βrc for each bridge codings,19 and take the averages across all years and all

bridge coders within each bridged country to generate the country level probability p(ycb =

k). Focusing only on bridged observations, we also calculate the same posterior predicted

probability of observing yctrc for each each in-country rater rc, and then generate the country

level average for each bridged country, p(ycc = k). These average scores tell us how well the

model fits bridge raters relative to in-country raters for bridged cases. By focusing only on

bridged cases, we control for the degree of difficulty inherent in predicting the cases that

happen to be bridged. For a bridged country c, if these two values are close to each other,

the model fit is similar across bridge and local raters for this country. Thus we have little

evidence of scale incompatibility. On the other hand, if the model fits bridge raters poorly,

relative to in-country coders, then we know that scale equivalence is unlikely.

It is important to note that such comparison cannot establish scale identification across

countries. Rather a small difference between the posterior probabilities indicates only that

there is little evidence that the scale of measurement in country c is different than the

scales in the countries that supplied bridge raters for c. On the other hand, if the difference

is large, then the model is substantially worse at predicting how bridge raters will judge

country c than it at predicting how local rater behavior. There are a number of possible

reasons for such a finding. For instance, bridge coders might be less discriminating than

19We also calculate a posterior distribution around the probability based on each draw from the model
posterior.
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their in-country counterparts. But substantial differences between how well the model fits

bridge codings and local codings of bridged cases can help researchers identify cases that are

unlikely to be globally identified, and thus require more bridge coding.

[Figure 18 about here]

For the experiments on two types of countries described in section 3.1, we calculated

these average posterior probabilities. Figure 18 shows the results and compares the scores

of in-country and bridge coders when there are different numbers of bridge coders from the

“random” country rate the “constant” country. As expected, the posterior probabilities of

bridge ratings are lower than those of in-country ratings. In addition, the differences between

them decrease as more coders from the “random” country provide ratings for the “constant”

country. In the baseline model where there is no bridging, the posterior probabilities of the

in-country coders are higher than those of bridge coders by around .15. When all coders from

the “random” country code the “constant” country for all the years, the average difference

between them decrease to .03.

[Figure 19 about here]

We also calculate the posterior probabilities for experiments in which coders from the

“constant” country do bridging coding for the “random” country. The results are shown

in Figure 19. The posterior probabilities of the in-country and those of bridge coders do

become closer when there are more bridge coders. However, to our surprise, the posterior

probabilities of the bridge ratings for the “random” country are consistently higher than

those of in-country ratings. The probabilities of the bridge ratings decrease with the number

of bridge coders, and therefore their probabilities become closer.

This result calls into the question the validity of this PPD-based test for bridging failure.

We are currently investigating other tools for identifying scale equivalence problems in real

data.
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5 Efficiently Selecting Bridges

The simulations in section 3 illustrate general patterns in bridge rating efficacy. Ideally, we

would ask a significant number of country-coders to provide bridge ratings for long time

periods in a second country. But, in projects like V-Dem, where coding demands significant

investment from experts, we would like to use patterns in the ratings that we do have to

identify potential bridges that are likely to give us the most bang for the buck. Our approach

to this problem is motivated by the literature on computerized adaptive testing (CAT).20

In the testing context, CAT techniques seek to present questions to a student in an order

that identifies that student’s latent ability on a particular dimension as quickly as possible.

This shortens test time—or survey length—conserving resources. Here, students are anal-

ogous to country-years and questions take the place of raters. One generally assumes that

question (rater) parameters—each γr,k and βr—are known and iteratively chooses questions,

based on their estimated parameters that minimize the expected posterior variance in the es-

timate of the student’s latent ability. First, CAT algorithms prioritize highly discriminating

questions. Then questions are selected based on the relationship between item thresholds

and the current estimate of the student’s latent ability. Intuitively, this generally involves

presenting a student with a moderately difficult question to begin with, presenting a harder

(easier) question if the student does well (poorly) on the first question, and repeating the

process until the estimate of the student’s latent ability reaches some desired level of preci-

sion. A common strategy for item selection uses the MEPV (minimum expected posterior

variance) criterion. Specifically, for a single student with latent trait, z, at each step in the

process, the algorithm chooses the question, q, that meets the condition

argmin
q

[
K∑
k∈1

pq(y
i+1
q = k|yi)Var(z|yi, yi+1

q = k)

]
: q ∈ Qi (4)

20See Montgomery & Cutler (2013) for an introduction to this literature aimed at survey researchers in
political science. Choi & Swartz (2009) provide an overview of CAT item selection methods for ordinal items.
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where pq(y
i+1
q = k|yi) is the posterior predicted probability, prior to answering question q,

that the student’s answer to question q achieves a score of k, Var(z|yi, yi+1
q = k) is the

posterior variance of the student’s latent ability, conditional on her previous performance

and achieving a score of k on question q, and Qi is the set of remaining potential questions

at the ith step of the process (Choi & Swartz 2009).

5.1 Computerized Adaptive Bridging

Our problem differs from the traditional CAT setting in a number of ways. Most importantly,

we cannot assume that our current parameter estimates are valid. Our primary goal here

is not to reduce uncertainty, but rather to find and eliminate bias. If latent trait estimates

are biased at step i, then a bridging strategy based on MEPV has the potential to erro-

neously increase our certainty in both biased threshold estimates and biased latent traits. A

bridge-selection strategy based on MEPV chooses bridges that are most likely to reinforce

existing model estimates. Nonetheless, the logic of CAT suggests a strategy for efficient bias

detection and correction. When a bridging problem exists, good bridges will substantially

alter parameter estimates, particularly zct and γr,k values. This is because good bridges are

cases in which a bridge rater behaves in a way that is highly inconsistent with the model’s

expectations. Therefore, focusing on latent traits, we propose selecting bridges that have

the highest potential to alter existing estimates. Formally, at each step in the algorithm, we

select the bridge that meets the condition

argmax
{c,t,r}

[
1

K

K∑
k=1

(
1

|C| × |T |
∑

c,t∈C×T

[
E(zct|yi, yi+1

ctr = k)− E(zct|yi)
]2)]

: {c, t, r} ∈ Bi (5)

where Bi is the set of potential remaining bridges at step i. This approach iterates over

potential bridges and chooses the bridge that maximizes the mean square error between

current and potential estimates, averaged across potential bridge rater responses. We call

this the MAM, or maximum average MSE, algorithm. This approach ignores the expected
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probability that bridging raters will choose each category, k. This is a potential feature

because, when the model lacks cross-national scale equivalence, predicted response probabil-

ities will be misleading. Nonetheless, as the model approaches scale equivalence, weighting

expected MSE by the probability of observing each particular bridge rating will guide the

algorithm towards more informative bridging opportunities. Thus, we also propose an alter-

native algorithm—the maximum expected MSE, or MEM—which iteratively selects bridges

meeting the following condition

argmax
{c,t,r}

[
1

K

K∑
k=1

pctr(yctr
i+1 = k|yi)

(
1

|C| × |T |
∑

c,t∈C×T

[
E(zct|yi, yi+1

ctr = k)− E(zct|yi)
]2)]

: {c, t, r} ∈ Bi.

(6)

In principle, we should be able to run either of these algorithms until the observed MSE

between parameters from the pre- and post-bridge model fits falls below a desired thresh-

old. Moreover, we can easily adapt these algorithms for constrained search, by altering the

contents of Bi. For instance, while an expert on parliamentary politics in Ecuador might,

in principle, provide a very informative bridge were she to rate legislative corruption in

Bangladesh in 1964, we are unlikely to find an Ecuadorian specialist with detailed knowl-

edge of Bangladeshi politics in the middle of the last century. Similarly, it is unlikely to

be practical to recruit bridges one at a time in most cross-national expert survey projects.

Thus, rather than attempting to recruit only the single bridge that maximizes equations 5 or

6, we could use this approach to identify the set of n most potentially informative bridges,

from a set of plausible potential bridges, at each step.

The proposed algorithms for efficient bridge search are very computationally expensive

because they require us to generate posterior estimates for the model parameters for each

potential outcome of each potential bridging rating at each step of the search. These compu-

tational needs quickly become prohibitively expensive when we use MCMC techniques—even

ones that generally converge quickly, like Hamiltonian Monte Carlo (HMC)—to estimate

model parameters. Standard CAT applications only require the estimation of a single pa-
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rameter, making numerical integration a practical approach (Montgomery & Cutler 2013);

here we need to estimate full multi-parameter models, and solve high-dimensional integrals,

making this solution a non-starter. Therefore, we use a variational approximation algorithm

to estimate model parameters at each step (Jordan, Ghahramani, Jaakkola & Saul 1999).21

Appendix A provides details.

5.2 Evaluating the MAM Algorithm

Figure 20 depicts the results of a simulation that compares the MAM algorithm to a random

search for bridges. Specifically, we simulated an initial unbridged dataset just as we did

when examining the constant coder problem in section 3.1.22 Then we simulated two search

process. Each process sequentially added 100 bridges to the unbridged dataset. After each

bridge was added, we calculated the mean square error between the “true” distribution of

latent traits and the estimates provided by the O-IRT model. In the first search process, we

chose bridges at random. In the second, we used the MAM algorithm to sequentially select

bridges that had the maximum average potential to alter latent trait estimates. As figure 20

clearly shows, the MAM algorithm chooses bridges that reduce the MSE substantially more

rapidly than is possible through random selection. Indeed, we obtain an impressive drop in

MSE with fewer than 25 bridge codes, approaching that of a fully bridged model (i.e. every

rater rates every case). Yet clearly, the MAM process exhibits sharp discontinuities in MSE.

This is because, while the algorithm identifies bridges with the potential to “surprise” the

model, the rater actually has to do something unexpected for the model to substantially

recalibrate. It seems that potentially surprising bridges are also likely to be somewhat less

informative than randomly selected bridges, when the rater does not behave in an unexpected

21Variational approximation techniques were developed by computer scientists and their descriptions of
these methods tend to use jargon that is unfamiliar to social scientists. Ormerod & Wand (2010) provide an
overview of these methods, aimed at statisticians, using language that should be familiar to social scientists
with statistical training. Grimmer (2010) provides an introduction using examples drawn from political
science.

22Because the MAM algorithm is computationally expensive, we limit our time-spans to 50 years in this
simulation.
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way. This aspect of the algorithm is likely to stymie the search for a reliable stopping rule,

and may be related to the failure of PPD comparisons to effectively diagnose bridging issues.

Nonetheless, the algorithm shows promise. Future iterations of this paper will investigate

how the MEM algorithm fares in this regard. It would also be interesting to see how the

algorithm fares when given tasks such as choosing full-time-series bridge-raters, or operating

under potential bridge constraints.

6 Conclusion

This paper provides perhaps the first systematic analysis of bridging in the context of item

response models for cross-national expert surveys. We believe this to be an issue that is

applicable to a large number of studies, which build upon the ability of country experts

to provide detailed information about latent political concepts. While country experts’

knowledge is a rich source of data, using this source brings about serious challenges in

terms of cross-rater comparability, which, thus far, have not been thoroughly addressed in

the literature. Furthermore, while the question has been more extensively examined in the

context of measuring ideological common spaces, we lack general tools for effectively assessing

bridging quality in latent variable models. Thus, exploring how patterns of bridging affect

scale comparability in the sorts of models we examine here has implications for a wide array

of work in the discipline.

Of course, our current study is motivated by the data collected as part of the Varieties

of Democracies project. Therefore, we have focused on patterns of bridging failure that are

relevant to V-Dem. We address the issue of bridging low-variance, ‘constant’ countries, by

performing a number of Monte Carlo simulations in which we gradually increase the degree

of bridging to, and from, these countries. Our results demonstrate that bridging has a large

impact on the model’s parameters. First, the results indicate that bridging brings about

a rapid decrease in the mean square error of the latent ability scores, and an increase in
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credible interval coverage. In our simulated data, even one bridge coder (a coder who rates

both countries for the entire 100 year period), brings about a reduction of about 70% in

MSE, and a 30%-50% increase in coverage rates. However, it is important to note that the

pattern of bridging has consequences. The results show that recruiting a limited number of

bridge coders who rate a large period in the bridged country is a much better way of reducing

bias than obtaining a large number of coders who only rate a small number of years.

In conjunction with examining MSE and coverage, a direct comparison of the model’s

estimated parameters with the data we generated yields an additional important finding.

Specifically, when it comes to estimating countries’ latent ability scores (zct), bridging from

a constant country to a country with substantive variation provides a larger reduction in

model bias. When we inspect the effects of bridge coding on estimation of thresholds (γj,k

parameters), it becomes evident that a constant-random bridging pattern is a much better

way of reducing bias and identifying coders’ thresholds than a random-constant bridging

pattern.

Next, we tackle the issue of cross-rater thresholds’ comparability. We know that in may

cases, raters vary greatly in their thresholds. Some coders might be described as lenient,

i.e., they have very low thresholds for democratic indicators, while others may be tough, and

tend to high higher standards in terms of their rating. We address this issue by drawing

thresholds from two distributions with different means. Simulating bridging for the two types

of coders shows that bridging brings about an improvement in terms of MSE and of coverage,

but that this improvement is limited. Specifically, we gain improvement in estimating zct

parameters from the country from which we simulate the bridging, but not for the target

country. Overall, our experiments show how serious the varying threshold problem can be,

and that a very large amount of bridging (possibly from both directions) is necessary in

order to overcome bias that results from this issue.

The severity of bridging issues requires a technique that would help in evaluating bridging

quality. To do this, we utilize the posterior predictive probability (PPD) of having a given
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rating for in-country coders (p(ycc = k)), and compare this (averaged) probability with the

probability of a given rating for bridge-coders (p(ycb = k)). Our goal was to examine the

degree to which rates and patterns of bridge coding brings about a change in the compara-

bility of bridge coders’ correct prediction probabilities with that of in-country coders. The

results obtained from this technique indicate that a different approach might be more useful.

Specifically, when we simulate bridge coding from a high-variance country to a constant one,

we see that the increasing bridge-coding leads to higher similarity between in-country and

bridge coders’ prediction accuracy. This finding is in line with our theoretical expectations.

However, when we simulate bridging from a constant to a high-variance country, the results

do not match our expectations. First, we find that bridge coders from the constant country

do a better job at predicting the raw ratings of the target country than in-country coders. In

addition, increasing the amount of bridging leads to a decrease in the accuracy of in country

coders.

Finally, we propose and evaluate and algorithm for efficiently choosing bridge raters

and demonstrate promising results. Overall, the paper clearly shows that bridging (or lack

thereof) matters. Ignoring this issues leads to misleading inferences, both in terms of latent

ability estimates, and in terms of thresholds (difficulty) parameters. Moreover, achieving

cross-rater comparability is a complicated task. Our analysis demonstrates that a large

degree of bridging is necessary to bring about an improvement in biases that result from

low variation in coders’ rating, and from their varying conception of gradation in the latent

concept that is being measured.
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Figure 1: Raw ratings and measurement model results for barriers to parties indicator.
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Figure 2: Evaluation of bridging from constant to random countries–mean square error of
latent scores

similar, but not as strong as seen in figure 16. The bias for the random coders’ thresholds

is big, especially for the bridge coders.
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Figure 3: Evaluation of bridging from random to constant countries–mean square error of
latent scores
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Note: The figure shows the effects of bridging from a constant to a random country. Bridge coding is done for 10 years. The

vertical lines divide the figure into the bridging patterns, from a no-bridging to full-bridging (i.e. all coders from the constant

country also code the random country). In each section of the figure, points represent the MSE for 10 relevant simulations.

Figure 4: Evaluation of bridging from constant to random countries (10 years of bridging)–
mean square error of latent scores
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Note: The figure shows the effects of bridging from a random to a constant country. Bridge coding is done for 10 years. The

vertical lines divide the figure into the bridging patterns, from a no-bridging to full-bridging (i.e. all coders from the constant

country also code the random country). In each section of the figure, points represent the MSE for 10 relevant simulations.

Figure 5: Evaluation of bridging from random to constant countries (10 years of bridging)–
mean square error of latent scores
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Note: The figure shows the effects of bridging from a constant to a random country. Bridge coding is done for the entire time

period (100 years). The vertical lines divide the figure into the bridging patterns, from a no-bridging to full-bridging (i.e. all

coders from the constant country also code the random country). In each section of the figure, points represent the coverage

for 10 relevant simulations.

Figure 6: Evaluation of bridging from constant to random countries–95% coverage
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Note: The figure shows the effects of bridging from a constant to a random country. Bridge coding is done for the entire time

period (100 years). The vertical lines divide the figure into the bridging patterns, from a no-bridging to full-bridging (i.e. all

coders from the constant country also code the random country). In each section of the figure, points represent the coverage

for 10 relevant simulations.

Figure 7: Evaluation of bridging from random to constant countries–95% coverage
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Note: The figure shows the effects of bridging from a constant to a random country. Bridge coding is done for a 10 year

period. The vertical lines divide the figure into the bridging patterns, from a no-bridging to full-bridging (i.e. all coders from

the constant country also code the random country). In each section of the figure, points represent the coverage for 10 relevant

simulations.

Figure 8: Evaluation of bridging from random to constant countries–95% coverage
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Note: The figure shows the effects of bridging from a random to a constant country. Bridge coding is done for a 10 year

period. The vertical lines divide the figure into the bridging patterns, from a no-bridging to full-bridging (i.e. all coders from

the constant country also code the random country). In each section of the figure, points represent the coverage for 10 relevant

simulations.

Figure 9: Evaluation of bridging from random to constant countries–95% coverage
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Note: The figure shows the effects of bridging from a constant to a random country. The upper left panel presents the results

for the baseline mode (no bridging). Points depict the results of per simulations per regime (no bridging, one bridge coder, two

bridge coders, etc.)

Figure 10: Fitted and real latent score estimates. Bridging is from constant to random
countries
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Note: The figure shows the effects of bridging from a random to a constant country. The upper left panel presents the results

for the baseline mode (no bridging). Points depict the results of per simulations per regime (no bridging, one bridge coder, two

bridge coders, etc.)

Figure 11: Fitted and real latent score estimates. Bridging is from random to constant
countries
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Figure 12: Fitted and real thresholds’ estimates. Bridging is from constant to random
countries.

40



−1 0 1 2

−
2

−
1

0
1

2

Fitted and Raw Coders' Thresholds, No Bridging

γ

γ̂

bridge
constant
random

−1 0 1 2

−
2

−
1

0
1

2

Fitted and Raw Coders' Thresholds, One Bridge Coder

γ

γ̂

bridge
constant
random

−1 0 1 2

−
2

−
1

0
1

2

Fitted and Raw Coders' Thresholds, Two Bridge Coders

γ

γ̂

bridge
constant
random

−1 0 1 2

−
2

−
1

0
1

2

Fitted and Raw Coders' Thresholds, Three Bridge Coders

γ

γ̂

bridge
constant
random

−1 0 1 2

−
2

−
1

0
1

2

Fitted and Raw Coders' Thresholds, Four Bridge Coders

γ

γ̂

bridge
constant
random

−1 0 1 2

−
2

−
1

0
1

2

Fitted and Raw Coders' Thresholds, Five Bridge Coders

γ

γ̂

bridge
constant
random

Figure 13: Fitted and real thresholds’ estimates. Bridging is from random to constant
countries.
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Figure 14: Evaluation of bridging from a country with low coders’ thresholds to a country
with high coders’ thresholds, mean square error of latent scores.
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Figure 15: Evaluation of bridging from a country with high coders’ thresholds to a country
with low coders’ thresholds, mean square error of latent scores.
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Figure 16: Fitted and real latent score estimates. Bridging is from a random country with
low coders’ thresholds to a random country with high coders’ thresholds. Countries coded
by low threshold coders are represented by black dots. Countries coded by high threshold
coders are represented by red dots.
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Figure 17: Fitted and real latent score estimates. Bridging is from a random country with
high coders’ thresholds to a random country with low coders’ thresholds. Countries coded
by low threshold coders are represented by black dots. Countries coded by high threshold
coders are represented by red dots.
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Figure 18: Comparison of posterior predictive probabilities for in-country coders and bridge
coders. Bridging is from random country to constant country
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Figure 19: Comparison of posterior predictive probabilities for in-country coders and bridge
coders. Bridging is from constant country to random country
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8 Tables

Table 1: Sums of Mean Square Error
constant country random country

c-r bridging
1.13 0.60

(0.01) (0.009)

r-c bridging
1.60 0.97

(0.009) (0.01)

Note: Sums of mean square errors for model including full bridging pattern (bottom-right panels of Figures

10 and 11) . c-r bridging implies that coders from constant countries also code random the country. r-c

stands for the opposite pattern.
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A Variational Approximation for O-IRT

Variational approximation algorithms allow one to approximately estimate an intractable

density function, p(θ|y), by iteratively approximating the target density in terms of a more

tractable density, q(θ), in a way that minimizes the Kullback-Leiber divergence between

q and p(·|y). In a common approach, known as a mean field approximation, one selects

an approximating density q from a parametric family such that, for some parameter parti-

tion {θ1, . . . ,θM}, q(θ) factorizes into
∏M

i=1 qi(θi) (Ormerod & Wand 2010). Interestingly,

Ormerod & Wand (2010) show that mean field approximation and Gibbs sampling are closely

related. In particular, they show that the optimal sub-densities q1, . . . , qM for minimizing

the Kullback-Leiber divergence between q and p are

q∗i (θi) ∝ exp [E¬θi log p(θi|θ¬i,y)] . (7)

In other words, these optimal approximating distributions are functions of the full conditional

distributions of the parameters of p. Thus, it is generally straightforward to adapt any Gibbs

sampling algorithm, which simulates from p by iteratively drawing from the full conditional

distributions of p, into a mean field approximation algorithm. This is helpful in this context

because researchers have extensively developed Gibbs sampling algorithms for IRT models

(see e.g. Johnson & Albert 1999).

A.1 A Mean Field Approximation Algorithm for the O-IRT Model

We develop a mean approximation algorithm for the O-IRT model described by equation 3,

subject to the following priors:

zct ∼ N (0, 1), βr ∼ N (µβ, σ
2
β), and γr,k ∼ U(−2, 2) s.t γr,1 ≤ · · · ≤ γr,K−1.
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In particular, we construct an approximating distribution, q, such that

q(θ) = qỹctr(ỹctr)qzct(zct)qβr(βr)qγr,k(γr,k)

where θ is the full vector of model parameters, and the optimal approximating partitioned

distributions are

q∗ỹctr(ỹctr) ∝ exp [E¬ỹctr log p(ỹctr|θ¬yctr , yctr)]

∼ T N (E(zct)E(βr), 1, E(γr,yctr−1), E(γr,yctr)) ,

q∗zct(zct) ∝ exp [E¬zct log p(zct|θ¬zct ,yct)]

∼ N


∑
r∈Rct

E(βr)E(ỹctr)

1 +
∑
r∈Rct

E(βr
2)

,
1

1 +
∑
r∈Rct

E(βr
2)

 ,

q∗βr(βr) ∝ exp [E¬βr log p(βr|θ¬βr ,yr)]

∼ N


∑
c,t∈Jr

E(zct)E(ỹctr) +
µβ
σ2
β

1
σ2
β

+
∑
c,t∈Jr

E(zct2)
,

1
1
σ2
β

+
∑
c,t∈Jr

E(zct2)

 ,

q∗γr,k(γr,k) ∝ exp
[
E¬γr,k log p(γr,k|θ¬γr,k ,yr)

]
∼ U

(
max

[
−2, max

yctr=k
E(ỹctr)

]
,min

[
min

yctr=k+1
E(ỹctr), 2

])
.

(8)

The expectations in the approximating distributions are

E(ỹctr) = µctr +
φ(E(γr,yctr−1)− µctr)− φ(E(γr,yctr)− µctr)
Φ(E(γr,yctr)− µctr)− Φ(E(γr,yctr−1)− µctr)

E(zct) =

∑
r∈Rct

E(βr)E(ỹctr)

1 +
∑
r∈Rct

E(βr
2)

E(βr) =

∑
c,t∈Jr

E(zct)E(ỹctr) +
µβ
σ2
β

1
σ2
β

+
∑
c,t∈Jr

E(zct2)

E(γr,k) =
1

2

(
max

[
−2, max

yctr=k
E(ỹctr)

]
+ min

[
min

yctr=k+1
E(ỹctr), 2

])
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where µctr = E(zct)E(βr). Note that the notation E(x) is shorthand for the expected value

of x with respect to the approximating distribution qx(x). One confusing aspect of these

equations is that they appear to be infinitely recursive. So, for example, E(ỹctr) is a function

of E(zct) which is a function of E(yctr). But, at any point in the algorithm, the current

estimate of each qx(x) distribution is fixed and we have an approximation to E(x) for each

x that can be plugged directly into whatever distribution function we are updating our

estimate at the given step.

The algorithm works by iteratively approximating the values E(yctr), E(zct), E(βr), and

E(γr,k) across c, t, r, and k. Upon convergence, which we evaluate by monitoring change in

the lower bound on the marginal likelihood

p(y, q) ≡ exp

∫
q(θ) log

[
p(y,θ)

q(θ)

]
dθ,

we can calculate approximate point estimates and credible intervals for parameters of interest

by plugging our final estimates of these expectations into the approximating conditionals

described in equation 8.

55


